α,β,χ,δ,η,γ,κ,ι,ω,σ,θ,τ,ξ,π,ψ,ρ,μ,ν,ϖ,λ,Φ,φ,ε,ο,υ,ϑ,ζ
Α,Β,Χ,Δ,Η,Γ,Κ,Ι,Ω,Σ,Θ,Τ,Ξ,π,Ψ,Ρ,Μ,Ν,Λ,Φ,Ε,Ο,Υ,Ζ
C∈(AB]
C∈[AB)
i∈⟦1;2⟧
A∉[AB)
A⊄B
A⊃B
A⊇B
A⊅B
A⊉B
A∋B
A∌B
( AB )∦( CD )
( AB )⊥( CD )
a≯b
a≮b
a≱b
a≰b
ℤ/2ℤ*
ℤ/2ℤ[X]
ℤ/2ℤ*[X]
( f*g )( x )=∫−∞ +∞f(x-t).g(t). dt
( f*g )( x )=∑m=−∞+∞f(n-m).g(m)=∑m=−∞+∞f(m).g(n-m)
( f*( g+h ) )( x )def = ∫−∞ +∞f(x-t).( g(t)+h(t) ). dt
‖AB→‖+‖BC→‖≤‖AC→‖
Π(x),Πx
e(x),ex
cos2x+sin2x=1
log2x
x∈ℜandy∈ℑ
∂,ℏ,ƛ
{a∧b}⇒C
{aandb}⇒C
{a∨b}⇒C
{aorb}⇒C
{a xor b}⇒C
⇔x+2=0⇔x=−2
( A∪B )∩C
( d' )∥( d )and( d'' )∥( d )⇒( d'' )∥( d )
( d' )⊥( d )
∃( x;y )∈ℕ×ℕ
∃!x|toto
∀ε>0;∃η>0telquesi∣x-x0∣<η⇒∣f(x)-f(x0)∣<ε
P(ω∈Ω|x(ω)≤3 2)=∫−∞ 3 2e−t2dt
A⊂B∪C∩D
A⊆B
P(A∪B)=P(A)+P(B)-P(A∩B)
x≡1 mod 2
f∼g+h
f+fx+f(x)
f+fx2+f(x)
∫ℝ fdx
∫x∈ℍ∪ℂ ψ(x;t)dx
∫ℍ∪ℂ ψ(x;t)dx
1 2π∫x∈[1;2]∩[−1 2;+∞[ ψ(x;t)23dx
1 2π∫ x∈[1;2]ψ(x;t)23dt
∑n∈ℕ∩[1;2]1 n2
∑n∈ℕ1 n2
∏n∈ℕ1 n2
limx→+∞ sin(x) x
limx→+∞sin(x) x
limx→+∞x
limx→0x<0sin(x) x
limx→0 + sin(x) x
1⋯⋯⋯N⋮⋱ ⋮⋮ ⋱ ⋮⋮ ⋱⋮N⋯⋯⋯N
a11⋯⋯⋯an1⋮⋱ ⋮⋮ ⋱ ⋮⋮ ⋱⋮a1n⋯⋯⋯ann
{2dlog(2)}={∑n=1d2d-n n}+∑n=d+1+∞2d-n n
∑k=0+∞( −1 )kuk=∑k=0m-1( −1 )kuk+∑k=0∞( −1 )kΔkun
Δ1un=un+1-un
Δ2un=Δ1un+1-Δ1un=un+2-2un+1+un
Δ3un=Δ2un+2-Δ2un+1=un+3-3un+2+3un+1-un
∑k=1∞( 1+1 2+...+1 k )k−2=17π4 360
( a+b )n=∑k=0nCnkakbn-k
( a+b )n=∑k=0n Cnkakbn-k
Ank
m.ax→=Px→+Fski→+Fair→
ax=g.sin(α)-Fski m-Fair m
z-=2-3i
E=hν
P=h λ
E=p2 2m+V(r)
p→
σ̂=1 n-1∑i=1n( x-X- )2
AB︵
f: ℝ→ℝx↦2x+3
f: ℝ→ℝx↦f(x)
C(n;k)= Cnk=nCk=nk=n! k!(n-k)!
erf(z)=2 π∑n=0+∞( −1 )nz2n+1 n!( 2n+1 )
⋃i=1Nf
⋂i=1Nf
∫1 Nfdi
∬i=1Nf
∭i=1Nf
∫i=1Nf
∬Ωf
∮i=1Nf
∯i=1Nf
∰i=1Nf
∰Ωf
⊕i=1Nf
⊗i=1Nf
⊙i=1Nf
∑i=1Nf
{x+y=22x+3y=32
x+y=22x+3y=32}⇔x∈{−26;28}
{x+y=22x+3y=32⇔x∈{−26;28}
{x+y=22x+3y=32}⇔x∈{−26;28}
∣x∣={xsix≥0−xsix<0
f(x)={xsix∈]−∞;−1]−2xsix∈]1;2]−2x+1 2six∈]2;+∞[
a⊕b
a⊗b
a⊙b
z→∧( a→∧b→ )
z→.( a→∧b→ )
a→.b→
a→.( b→+c→ )=a→.b→+a→.c→
{x≡2 mod 3x≡5 mod 7
( f∘g )( x )=f(g(x))
( f∘g )'(x)=f'(g(x))×g'(x)
( f×g )'=f'×g+g'×f
( f×g )'(x)=f'(x)×g(x)+g'(x)×f(x)
( f g )'=f'×g-g'×f g2
σ(X)
〈a|b〉
〈a|
|b〉
H2SO4
SO42-
92238U
CH4+2O2→CO2+2H2O
p→̂2 2m∣Ψ(t)+V(r→̂,t)∣Ψ(t)〉
|tyo〉
f(pi,qi,t)
df dt={f,H}+∂f ∂t
{f;g}=∑i=1N( ∂f ∂qi∂g ∂pi-∂f ∂pi∂g ∂qi )
[A;BC]=[A;B]C+B[A;C]
d dsBC=dA dsC+BdC ds
gradT=∂T ∂x
∇T(x)=T'(x)=dT dx( x )
f: ℝ2↦ℝ
gradf=∇f
∂2∂t^2( f )
∂∂t( f )
∂2∂t∂u( f )
∂2f∂t∂u
E=ℏν
Ĥ|Ψ〉=iℏd dt|Ψ〉
J2=j( j+1 )ℏ2with: j=0,1,2,3,4, …
Jz=mℏ
ΔxΔp≥1 2ℏ
Développement limité
Soit une application:
avec ( n In {2;3} for example)
est monotone (resp. strictement monotone), alors f est convexe (resp. strictement convexe).
C'est-à-dire, en utilisant la caractérisation par les cordes :
M(x;y;z)∈( ABC )⇔x+3y-5z+5=0
x1y1z1∧x2y2z2=( −y1 )z2-y2z1−(( ( x1z2-x2z1 ) ))x1y2-x2y1
n→=AB→∧AC→=( −2;−6;10 )
n1→=−1/2n→
grad→f=∇→f
∂∂t( ∇f )=∇∂f∂t
div(grad→f)=Δf
grad→( divf )=rot→( rot→f )+Δ→f→
∇→S.dOM→=( yi→+xj→ ).( dxi→+dyj→ )=( ∂(xy) ∂xi→+∂(xy) ∂yj→ ).( dxi→+dyj→ )
12345-two=11000000111001
Np={p-1sip≡+1( mod4 )p+1sip≡−1( mod4 )
2≡+1
t=0,1, … ,p-1,∞
−1=i2
∏pp Np=∏p( 1-ap p )−1
=( ∏( p≡1( 4 ) )( 1-1 p )−1 ).( ∏( p≡−1( 4 ) )( 1-1 p )−1 )
=( ∏( p≡1( 4 ) )1+1 p+1 p2+1 p3+... ).( ∏( p≡−1( 4 ) )1-1 p+1 p2-1 p3+... )
=1-1 3+1 5-1 7+1 9-1 11+....
=π 4