MathML Example document

produced by "iMathGeo" & "Softwares" generator under ©

Sunday on June 12, 2011 at 09:01AM

 typographical news

α,β,χ,δ,η,γ,κ,ι,ω,σ,θ,τ,ξ,π,ψ,ρ,μ,ν,ϖ,λ,Φ,φ,ε,ο,υ,ϑ,ζ

Α,Β,Χ,Δ,Η,Γ,Κ,Ι,Ω,Σ,Θ,Τ,Ξ,π,Ψ,Ρ,Μ,Ν,Λ,Φ,Ε,Ο,Υ,Ζ

C(AB]

C[AB)

i1;2

A[AB)

AB

AB

AB

AB

AB

AB

AB

AB

( AB )( CD )

( AB )( CD )

ab

ab

ab

ab

 /2*

/2[X]

 /2*[X]

( f*g )( x )= +f(x-t).g(t). dt

( f*g )( x )=m=+f(n-m).g(m)=m=+f(m).g(n-m)

( f*( g+h ) )( x )def = +f(x-t).( g(t)+h(t) ). dt

AB+BCAC

Π(x),Πx

e(x),ex

cos2x+sin2x=1

log2x

xandy

,,ƛ

{ab}C

{aandb}C

{ab}C

{aorb}C

{a xor b}C

 x+2=0x=2

( AB )C

( d' )( d )and( d'' )( d )( d'' )( d )

( d' )( d )

( x;y )×

!x|toto

ε>0;η>0telquesix-x0<ηf(x)-f(x0)<ε

P(ωΩ|x(ω)3 2)= 3 2et2dt

ABCD

AB

P(AB)=P(A)+P(B)-P(AB)

x1 mod 2

fg+h

f+fx+f(x)

f+fx2+f(x)

fdx

x ψ(x;t)dx

ψ(x;t)dx

1 2πx[1;2][1 2;+[ ψ(x;t)23dx

1 2π x[1;2]ψ(x;t)23dt

n[1;2]1 n2

n1 n2

n1 n2

limx+ sin(x) x

limx+sin(x) x

limx+x

limx0x<0sin(x) x

limx0 + sin(x) x

limx0 + sin(x) x

1N NN

a11an1 a1nann

{2dlog(2)}={n=1d2d-n n}+n=d+1+2d-n n

k=0+( 1 )kuk=k=0m-1( 1 )kuk+k=0( 1 )kΔkun

Δ1un=un+1-un

Δ2un=Δ1un+1-Δ1un=un+2-2un+1+un

Δ3un=Δ2un+2-Δ2un+1=un+3-3un+2+3un+1-un

k=1( 1+1 2+...+1 k )k2=17π4 360

( a+b )n=k=0nCnkakbn-k

( a+b )n=k=0n Cnkakbn-k

Ank

m.ax=Px+Fski+Fair

ax=g.sin(α)-Fski m-Fair m

z-=2-3i

E=hν

P=h λ

E=p2 2m+V(r)

E=hν

P=h λ

E=p2 2m+V(r)

p

σ̂=1 n-1i=1n( x-X- )2

AB

f: x2x+3

f: xf(x)

C(n;k)= Cnk=nCk=nk=n! k!(n-k)!

erf(z)=2 πn=0+( 1 )nz2n+1 n!( 2n+1 )

i=1Nf

i=1Nf

1 Nfdi

i=1Nf

i=1Nf

i=1Nf

Ωf

i=1Nf

i=1Nf

i=1Nf

i=1Nf

Ωf

i=1Nf

i=1Nf

i=1Nf

i=1Nf

{x+y=22x+3y=32

x+y=22x+3y=32}x{26;28}

{x+y=22x+3y=32x{26;28}

{x+y=22x+3y=32x{26;28}

{x+y=22x+3y=32x{26;28}

{x+y=22x+3y=32}x{26;28}

x={xsix0xsix<0

f(x)={xsix];1]2xsix]1;2]2x+1 2six]2;+[

ab

ab

ab

ab

z( ab )

z.( ab )

a.b

a.b

a.( b+c )=a.b+a.c

{x2 mod 3x5 mod 7

( fg )( x )=f(g(x))

( fg )'(x)=f'(g(x))×g'(x)

( f×g )'=f'×g+g'×f

( f×g )'(x)=f'(x)×g(x)+g'(x)×f(x)

( f g )'=f'×g-g'×f g2

σ(X)

 Physic

a|b

a|

|b

H2SO4

SO42-

92238U

CH4+2O2CO2+2H2O

p̂2 2mΨ(t)+V(r̂,t)Ψ(t)

|tyo

f(pi,qi,t)

  is given by

df dt={f,H}+f t

{f;g}=i=1N( f qig pi-f pig qi )

[A;BC]=[A;B]C+B[A;C]

d dsBC=dA dsC+BdC ds

gradT=T x

T(x)=T'(x)=dT dx( x )

f: 2

gradf=f

2t^2( f )

t( f )

2tu( f )

2ftu

E=ν

Ĥ|Ψ=id dt|Ψ

J2=j( j+1 )2with: j=0,1,2,3,4,

Jz=m

ΔxΔp1 2

  Gradient et variété riemanniene

   Développement limité

   Soit une application:

   avec ( n  In  {2;3} for example) 

   est monotone (resp. strictement monotone), alors f est convexe (resp. strictement convexe). 

   C'est-à-dire, en utilisant la caractérisation par les cordes :

 Relations vectorielles

M(x;y;z)( ABC )x+3y-5z+5=0

x1y1z1x2y2z2=( y1 )z2-y2z1−(( ( x1z2-x2z1 ) ))x1y2-x2y1

n=ABAC=( 2;6;10 )

n1=1/2n

gradf=f

t( f )=ft

div(gradf)=Δf

grad( divf )=rot( rotf )+Δf

  Changement of Base 

S.dOM=( yi+xj ).( dxi+dyj )=( ∂(xy) xi+∂(xy) yj ).( dxi+dyj )

12345-two=11000000111001

Np={p-1sip+1( mod4 )p+1sip1( mod4 )

2+1

t=0,1, ,p-1,

1=i2

pp Np=p( 1-ap p )1

 =( ( p1( 4 ) )( 1-1 p )1 ).( ( p1( 4 ) )( 1-1 p )1 )

 =( ( p1( 4 ) )1+1 p+1 p2+1 p3+... ).( ( p1( 4 ) )1-1 p+1 p2-1 p3+... )

 =1-1 3+1 5-1 7+1 9-1 11+....

 =π 4